从2018年OpenAl提出的参数为1.17亿的GPT算法,到2020年推出参数为1,750亿的GPT-3,参数实现了116倍的增长,跨足千亿级大模型,对2019年的NLP模型构成巨大冲击。随后,OpenAl推出基于GPT-3.5Turbo模型,具备更大参数和更高精度,进一步普及了人工智能。今年,OpenAl在3月15日发布了多模态预训练大模型GPT-4,其技术原理和训练机制与GPT-3.5相似,但引发了公众对Al的极大热情。GPT-4经过升级,提升了ChatGPT的图像识别能力、文字限制扩展至2.5万字、专业性回答的准确性以及风格变换能力。与以往模型相比,GPT-4最显著的创新之一是其多模态能力。
语言大模型的助力下,垂直领域的应用呈现出更高的专业性、高质量的产出以及在特定任务上的卓越表现。目前,这些应用已广泛渗透到金融、政务、交通、医疗、教育等领域。Al大模型在高度渗透的应用领域取得成功的原因在于其拥有丰富高质量的数据、强烈的技术需求和创新要求,以及规范的商业环境。此外,这些领域对客观、理性建议的需求也激励大模型提供更准确、更有逻辑的解决方案,以满足高级决策和战略制定的要求。这一成功不仅推动了行业的发展,也为大模型应用提供了新的机遇和动力。
Al大模型对各类产业的影响程度各不相同。在服务型产业中,Al能够实现5.8%的显著成本降低,主要集中在客户营销、客户运营、客户服务等获取和转化客户的成本方面,具有高替代潜力。在媒介型产业中,成本降低比例为2.8%,主要表现在销售渠道管理和营销内容等关键领域。对于产品型产业,Al有望减少1.6%的成本,这些企业通常在产品研发设计和市场营销方面投入较多,因此未来将通过自动生成产品模型、外观设计以及宣传材料来重塑工作模式。然而,在制造型和基础源头型产业中,Al大模型的渗透率相对较小,成本下降幅度仅为0.5%。
来源:沙利文




















关于我们
我们是一家专注于分享国内外各类行业研究报告/专题热点行业报告/白皮书/蓝皮书/年度报告等各类优质研究报告分享平台。所有报告来源于国内外数百家机构,包含传统行业、金融娱乐、互联网+、新兴行业、医疗大健康等专题研究.....目前已累积收集近80000+份行业报告,涉及众多大板块,多个细分领域。
内容涵盖但不限于(市面上有的基本都有):
1、互联网运营、新媒体、短视频、抖音快手小红书等等;
2、房地产、金融、券商、保险、私募等;
3、新技术(5G)、金融科技、区块链、人工智能类;
4、电子商务、市场营销、运营管理、麦肯锡、德勤等;
5、快消品、餐饮、教育、医疗、化妆品、旅游酒店、出行类等;
免责声明:
本平台只做内容的收集及分享,报告版权归原撰写发布机构所有,由圣香智库社群通过公开合法渠道获得,如涉及侵权,请联系我们删除;如对报告内容存疑,请与撰写、发布机构联系。